Bilag 6.6

Kjærgaard, C. 2018. Drænvirkemidler og vådområder – grundlag for implementering og lokale effekter. Indlæg ved kursus for rådgivere og kommunale sagsbehandlere "Nye drænvirkemidler målrettet vandmiljøindsatsen i landbruget", Centrovice d. 10.10.2018

DRÆNVIRKEMIDLER OG VÅDOMRÅDER – GRUNDLAG FOR IMPLEMENTERING OG LOKALE EFFEKTER

Charlotte Kjærgaard, Chefforsker Miljø, SEGES E-mail <u>chkj@seges.dk</u>

Kursus: Nye drænvirkemidler målrettet vandmiljøindsatsen i landbruget Centrovice den 10. oktober 2018

Drænvirkemidler som en del af den målrettede virkemiddelsindsats

Målrettede drænvirkemidler tilpasset landskabet

Randzonen (IBZ, mættet randzone)

SEGES

50-100% N; ?% P

Infiltration af

Vådområder i ådale

Afstrømning via dræn varierer mellem drænede arealer

SEGES

Placering af virkemidler i en landskabshydrologisk kontekst

FIGURE 2. (a) Riparian lowland

area, and (b) agricultural upland intercepted by riparian lowland in the

Danish watersheds

Ripariske lavbundsarealer kontrollerer oplandes kvælstofbalance

SEGES Kjærgaard, C. & Hørfarter R. 2018. Potential significance of of riparian lowlands on nitrogen fluxes from agricultural drainage in Danish watersheds. Presentation BONUS, Gdansk, Polen 14-16, March 2018.

Riparisk lavbund – vådområder eller afbrudte dræn

Dræn der afbrydes i skræntfoden og infiltration af drænvand er pt ikke godkendt virkemiddel

Riparisk lavbund – afbrudte dræn i skræntfoden langs en ådal

SEGES Petersen R.J., Prinds C., Iversen B.V., Jessen S., Engesgaard P., Kjærgaard, C. 2018. Transport and transformation of nitrate i a Danish riparian lowland. Presentation BONUS, Gdansk, Polen 14-16, March 2018.

Riparisk lavbund – afbrudte dræn

>81-97% NO₃-N reduktion ved infiltration

Forskningsresultater indsendt til publicering:

R.J. Petersen, C. Prinds, B.V. Iversen, P. Engesgaard, S. Jessen and C. Kjaergaard. 2018. Nitrogen reduction along variable flow pathways in riparian lowland transects. Submitted to Water Resources Research.

Strategi for implementering af drænvirkemidler

Hvor skal vi implementere de målrettede drænvirkemidler så vi sikrer en omkostningseffektiv virkemiddelsstrategi?

Kriterier

- 1. Reduktionskrav ved kyst (forskelle mellem de 90 vandoplande jf. vandplanerne)
- 2. Arealernes egnethed (drænafstrømningsbidrag)
- 3. Kvælstoftab via dræn kvantitativ betydende (andel af kvælstoftab fra rodzonen, der tabes via dræn)
- 4. Kvantitativ effekt på N-udledningen til kyst (≥300 kg/ha/år)

Strategi for implementering af drænvirkemidler

Hvor skal vi implementere de målrettede drænvirkemidler så vi sikrer en omkostningseffektiv virkemiddelsstrategi?

Kriterier

- 1. Reduktionskrav ved kyst (forskelle mellem de 90 vandoplande jf. vandplanerne)
- 2. Arealernes egnethed (drænafstrømningsbidrag)
- 3. Kvælstoftab via dræn kvantitativ betydende (andel af kvælstoftab fra rodzonen, der tabes via dræn)
- 4. Kvantitativ effekt på N-udledningen til kyst (≥300 kg/ha/år)

Minivådområder – det nationale potentialekort

SEGES

Kjærgaard, C, Bach, E.O., Greve, M.H., Iversen, B.V. 2016. Kortlægning af potentielle områder til etablering af konstruerede minivådområder. DCA – Nationalt Center for Fødevarer & Jordbrug, 19. december 2016.

Minivådområder – det nationale potentialekort

Potentielt egnet til minivådområde

Kjærgaard, C, Bach, E.O., Greve, M.H., Iversen, B.V. 2016. Kortlægning af potentielle områder til etablering af konstruerede minivådområder. DCA – Nationalt Center for Fødevarer & Jordbrug, 19. december 2016.

Kortlægning af virkemiddelspotentiale Norsminde Fjord

Arealer egnet til vådområder og minivådområder

ID15 oplande	Egnet minivådområde (%)	Opland til riparisk lavbund	Riparisk Iavbund	
		(%)	(%)	
43600028	61	4,4	16	
43600041	50	33	11	
43600042	75	11	2,5	
43600043	61	22	6,2	
43600051	73	1,1	0,9	
43602599	72	5,4	1,1	
Total	4.815 (63)	1.224 (16)	541 (7)	
	1	\downarrow	1	
Area	l egnet	Riparisk lavbund		
minivådområde (vådområde, afbrudte d				

Kjærgaard, C., Hoffmann, C.C., Iversen, B.V. 2017. Filtre i landskabet øger retentionen. I: Filtre i landskabet, Vand & Jord, nr. 3, s. 106-110

Strategi for implementering af drænvirkemidler

Hvor skal vi implementere de målrettede drænvirkemidler så vi sikrer en omkostningseffektiv virkemiddelsstrategi?

Kriterier

- 1. Reduktionskrav ved kyst (forskelle mellem de 90 vandoplande jf. vandplanerne)
- 2. Arealernes egnethed (drænafstrømningsbidrag)
- 3. Kvælstoftab via dræn kvantitativ betydende (andel af kvælstoftab fra rodzonen, der tabes via dræn)
- 4. Kvantitativ effekt på N-udledningen til kyst (≥300 kg/ha/år)

Drænvirkemidler korrigeres for kvælstofretention i overfladevand

Kvantificering af drænvirkemidler ved kyst

N-tab fra rodzonen skal korrigeres for dræntab

Kyst-effekt korrigeret overfladevandsretentionen

SEGES Kjærgaard, C. & Børgesen, C.D. 2017. Udarbejdelse af minivådområdeeffekt (kg N pr. ha minivådområde) på ID15 oplandsniveau. Reviderte version. DCA – Nationalt Center for Fødevarer & Jordbrug, J. nr. 2017-760-000042

Nationalt udpegningskort for placering og effekt af minivådområder

eller hvis din instutuion har købt brugsrettigheder hos COVI. Øvrig kommerciel anvendelse er ikke tilladt og vil kunne retsforfølges

SEGES

Planlægning af virkemiddelsindsats Norsminde Fjord

Målrettede drænvirkemidler tilpasset landskabet

SEGES

Virkemiddel	Position i landskabet	Arealkrav (% af opland)	N-red. eff (%)	P-ret. eff (%)
Riparisk vådområde	Riparisk Iavbund	10*	50-100	Risiko vurdering
Minivådområde overfladestrøm- ning	Opland	1	20-30	40-50
Matrice minivådområde	Opland	0,2-0,25	50-70	lkke fastlagt

Virkemiddelsindsats i Norsminde Fjord oplandet

Scenario	Virke- middel	Areal	Dræn- opland	Årlig N-effekt	Areal norm N-effekt	Virkemiddels potentiale	
		ha	ha	Ton N/år	Kg N/ha	Ton N/år	Ton P/år
0	Baseline					173	4,7
1	Riparisk vådområde	122	1.224	18-35	148-287	+	Risiko evaluering
2	Mini- vådområde	48	4.815	51	1.063	69-86 (40-50%)	1.9-2.4 (43-54%)
3	Matrice minivådområde	12	4.815	95	7.917	113-130 (67-75%)	N.D.

12-14 kg N/ha/år

Effekt af virkemidler på kvælstofudledningen efter korrektion for overfladevandsretention

- Nuværende N-udledning (baseline): 23 kg N/ha/år
- Scenario 2 (vådområder + minivådområder):
- Scenario 3 (vådområder + matrice minivådområder): 6-8 kg N/ha/år

SEGES Kjærgaard, C., Hoffmann, C.C., Iversen, B.V. 2017. Filtre i landskabet øger retentionen. I: Filtre i landskabet, Vand & Jord, nr. 3, s. 106-110

Drænvirkemidler øger landskabets kvælstofretention

Referencer

Kjærgaard, C, Bach, E.O., Greve, M.H., Iversen, B.V., Børgesen, C.D. 2017. Kortlægning af potentielle områder til etablering af konstruerede minivådområder. DCA – Nationalt Center for Fødevarer & Jordbrug, 19. maj 2017.

Kjærgaard, C. & Børgesen, C.D. 2017. Udarbejdelse af minivådområdeeffekt (kg N pr. ha minivådområde) på ID15 oplandsniveau. Reviderte version. DCA – Nationalt Center for Fødevarer & Jordbrug, J. nr. 2017-760-000042

Kjærgaard, C., Hoffmann, C.C., Iversen, B.V. 2017. Filtre i landskabet øger retentionen. I: Filtre i landskabet, Vand & Jord, nr. 3, s. 106-110

Kjærgaard et al., 2018. <u>http://idraen.dk</u>

Kjærgaard, C. & Hørfarter R. 2018. Potential significance of of riparian lowlands on nitrogen fluxes from agricultural drainage in Danish watersheds. Presentation BONUS, Gdansk, Polen 14-16, March 2018.

Petersen R.J., Prinds C., Iversen B.V., Jessen S., Engesgaard P., Kjærgaard, C. 2018. Transport and transformation of nitrate i a Danish riparian lowland. Presentation BONUS, Gdansk, Polen 14-16, March 2018.

Petersen, R.J., Prinds, C., Iversen, B.V., Engesgaard, P., Jessen, S., Kjaergaard, C. 2018. Nitrogen reduction along variable flow pathways in riparian lowland transects. Submitted to Water Resources Research

